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Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2,
Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the
ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from
iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and
inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification
and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative
medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant
advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically
usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as
well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a
concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerativemedicine. It also
discusses the current limitations and challenges in the application of iPSC-derived CMs.

Keywords Cardiomyocytes . Cardiac tissue engineering . Direct reprogramming . Pluripotent stem cells . iPSC . Regenerative
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Introduction

Induced pluripotent stem cells (iPSCs) are laboratory-derived
stem cells that can be reprogrammed from somatic cells by
introducing reprogramming factors using viral or non-viral
vectors. Colonies of iPSCs morphologically, molecularly
and phenotypically resemble embryonic stem cells (ESCs).

They possess self-renewal and pluripotency properties to dif-
ferentiate into cells of all three germ layers [1–3]. Therefore,
they are considered a valuable tool for in vivo and in vitro
study of human development and related diseases. It addition-
ally provides an advantage of being patient-specific autolo-
gous cell source to avoid immune rejection and does not pose
ethical issues as the cells can be harvested from the willing
adult.

The breakthrough research of iPSC isolation was per-
formed in the year 2006 by Nobel-prize winner Dr. Shinya
Yamanaka at Kyoto University using retroviral vectors for
introducing Oct4, Sox2, Klf4 and c-Myc, together called as
Yamanaka factor or OSKM factor, into mouse fibroblast [4,
5]. A year later, human iPSCs were reported by two indepen-
dent group of scientist from Japan, by introducing OSKM
factors [5], and United States, by introducing Oct4, Nanog,
Lin28 and Sox2 (called OSNL factor), in human somatic cell
[6]. Since then a number of modified methods based on viral
or non-viral delivery of reprogramming factors into the target
cells are under investigation and have shown promising re-
sults. A number of efforts are also being made to increase the
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reprogramming efficiency and derive the iPSCs from various
sources in both human and animals.

The reprogramming factors have been delivered into so-
matic cells by various viral vectors such as lentiviruses [7],
adenoviruses [8], retroviruses [5], sendai virus [9] and non-
viral methods such as synthetic bacterial plasmids [10], re-
combinant proteins [11], RNA [12], self-replicating RNAs
[13] and miRNA [14], piggyBac transposons [15], CRISPR-
Cas9 [16, 17] and Cre-lox system [18, 19] (Table 1). Initial
research used retroviral and lentiviral vectors for deriving the
iPSCs but such cells were not suitable for therapeutic applica-
tions because the exogenous genes can permanently integrate
into the genomic DNA. Thus, non-integrating adenoviral or
sendai viral vectors, transposons, plasmid vectors and DNA-
free methods using nanoparticle or carbon nano-tube were
investigated and become popular choice due to their reduced
risk of getting integrated. The reprogramming efficiency of
non-integrating methods was much lower (0.001–0.1%) than
those of integrating vectors (0.1–1%) [56, 57]. A number of
additional genes such as Glis 1, Utf1, hTERT [58, 59], small
molecules such as GSK3-β inhibitors (e.g. CHIR99021, BIO,
IQ-1), MEK/ERK inhibitor (e.g. PD032501, Pluripotin or
SC1), adenylyl cyclase activator (e.g. Forskolin), TGFβ in-
hibitor (e.g. A-83-01, SB43152), Vitamin C, ROCK inhibitor
(e.g. Thiazovivin,Y-27632), PI3K/Akt activator (e.g. PS48)
and epigenetic modifiers such as DNMT inhibitors (e.g. 5-
Azacytidine), HDAC inhibitors (e.g. Trichostatic A,
Valproic acid), G9a inhibitor (e.g. BIX0129) were found to
further improve the reprogramming of somatic cells into
iPSCs [60]. Many scientists now prefer to use sendai viral
vectors due to their non-integrating nature, ability to infect
wide range of cells and high transfection efficiency for a
footprint-free reprogramming [61].

The iPSCs have now been successfully generated from
both normal and diseased tissues, which can be used for ther-
apeutic purpose as well as for understanding the pathophysi-
ology of diseases and the mechanism of underlying genetic
mutations. The isolation of iPSCs has been successful from
human patients suffering from various diseases including
Schizophrenia [62], Rubinstein-Taybi Syndrome 1 [63],
Joubert Syndrome [64], Amyotrophic Lateral Sclerosis [65],
Neurofibromatosis type 1 [66], Non-ketotic Hyperglycinemia
[67], Hutchinson-Gilford Progeria Syndrome [68], Meckel-
Gruber Syndrome [69], Autism Spectrum Disorder [70, 71],
Bardet-Biedl Syndrome [69], Retinitis Pigmentosa [72],
Parkinson’s Disease [73, 74], Leukoencephalopathy [75],
Pendred Syndrome [76], Cone-Rod Dystrophy [77] etc. to list
a few. A variety of cell sources including cord blood [48] and
peripheral blood mononuclear cell (PBMC) have also been
successful [70, 78]. The factors have also been expressed into
somatic cells such as myogenic cells, keratinocytes, cardiac
fibroblasts, melanocytes, neuronal cells and chondrocytes of
mice, rats, rabbits, dogs, pigs, cattle, monkeys and other

animals to derived cell-specific iPSCs under in vitro condition
(Table 1). Even the most terminally differentiated cells such as
T cells [61], B cells [79], myocytes [80] have been used for the
isolation of iPSCs. In addition, different imaging techniques
such as bioluminescence, magnetic resonance, fluorescence
imaging, and positron emission tomography have also been
developed for in vivo tracking of transplanted stem cells [81]
for iPSCs-based research and therapy in biomedical field.

Large scale xeno-free culture of iPSCs is an essential re-
quirement for producing clinically usable cells with good
manufacturing practices (GMP). A number of scalable culture
systems are thus being investigated and proven to be useful for
in vitro culture of iPSCs. The iPSCs expansion has been per-
formed in spinner-flasks using a xeno-free culture medium
such as Essential 8 Medium, incorporated with defined matri-
ces such as recombinant vitronectin [82] or using
microcarrier-based systems [83, 84]. Newer systems such as
single-use Vertical-Wheel™ bioreactors [85, 86] have been
developed for cost-effective long term expansion and differ-
entiation of human iPSC either on microcarriers or as suspen-
sion aggregates. Moreover, bioreactors allow for more ad-
vanced feeding strategies. For instance, perfusion, where
spent medium is continuously being replaced with fresh me-
dium, was shown to improve the iPSC expansion when com-
pared to a more traditional repeated batch feeding [87, 88].
The details of various bioreactors for expansion and differen-
tiation have been reviewed elsewhere [89, 90].

Reprogramming Factors and Small Molecules for
Generation of iPSCs

The generation of iPSCs consists of several steps, each requir-
ing advanced skills and sophisticated laboratory facilities. A
key to the success of iPSCs generation is the introduction of
essential reprogramming factors into the somatic cells.
Fibroblasts cells were earlier reprogrammed to muscles cells
by introduction of cDNA into mouse fibroblasts [91] but ma-
jor revolution was brought up by Yamanaka’s group in 2006.
The Yamanaka’ group initially started with 24 factors for
reprogramming of mouse fibroblasts but finally found four
factors to be essential and sufficient in reprogramming the
somatic cells into pluripotent cells. The octamer binding tran-
scription factor (Oct4; also called Pou5f1) plays a vital role in
embryonic development and is the master regulator of stem
cell pluripotency. Sex determining region Y box2 (Sox2) is a
transcription factor that regulates the embryonic development,
cell fate and self-renewal of stem cells through the regulation
of Oct4 expression [92]. On the other hand, Kruppel like fac-
tor 4 (Klf4) has both transcriptional activation and repression
domains and is a member of zinc finger transcription factors
that is involved in cell differentiation, proliferation and sur-
vival. The Klf4 is believed prevent apoptosis and activate
Sox2 for promoting self-renewal of iPSCs [93]. The c-
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Table 1 Generation of the iPSCs from various types of cells

S.
No.

Types of cell Species Method used Differentiation References

1 PBMC Human CRISPR/Cas9 Hepatocyte [20]

2 PBMC Human Sendai viral vector for OSKM factor Neuronal cells, germ
layers

[21]

3 MEF Human Elastin-like polypeptide transfection Three germ layers [22]

4 PBMC Human Sendai reprogramming kit Three germ layers [23]

5 Dermal fibroblast Human Sendai reprogramming kit MSCs [24]

6 Dendritic cells Mouse Sendai reprogramming kit with KOS Embryoid body [25]

7 Urine cells Human Episomal vector Kidney organoids [26]

8 Hematopoietic cells Human Measles virus vector Embryoid body [27]

9 AFDSC Human Sendai reprogramming kit CMs [28]

10 PBMC Human Episomal vector Embryoid body [29]

11 Kidney cells Human CRISPR/Cas9 Embryoid body [30]

12 Skin fibroblast Human Episomal plasmid with OSKML factor Teratoma formation [31]

13 PBMC Human Sendai reprogramming kit Embryoid body [32]

14 Erythroblast Human CRISPR – [16]

15 HEK293 and Fibroblasts Human CRISPR Three germ layers [17]

16 Amniotic fluid stem cells Human Episomal plasmid Teratoma formation [33]

17 Fibroblasts Mouse CHIR, Forskolin, 616,452 and DZNep Teratoma formation,
Chimera
construction

[34]

18 Urine-derived cells Human cyclic pifithrin-a, A-83-01, CHIR99021, thiazovivin, sodium
butyrate and PD0325901

Teratoma formation [35]

19 Extra embryonic endoderm
like cells

– AM580, EPZ004777, SGC0946, and 5-Aza Teratoma formation [36]

20 Fibroblast Human OSKM followed by TAT-Cre treatment CMs [19]

21 MEF Mouse Lentiviral system followed by Cre-lox/HSV-tk/Gan technology Three germ layers [18]

22 Somatic cell Mouse Mbd3/NuRD with OSKM factors Teratoma formation [37]

23 Somatic cell Mouse Sox2, Klf4 and c-Myc with Forskolin,
2-methyl-5-hydroxytryptamine and D4476

Teratoma formation [38]

24 MEF Mouse Sox2 protein Germ layers [39]

25 Fibroblasts Mice Oct 4 with valproic acid, tranylcypromine, CHIR99021 Embryoid body,
Neuronal cells

[40]

26 Fibroblasts Mouse miR302/367 – [41]

27 Renal tubular cells from
urine

Human OSKM factor – [8]

28 Fibroblasts Human PD0325901, CHIR99021, A-83-01, HA-100 and LIF Embryoid body [42]

29 MEF Mouse Oct4, Klf4, c-Myc with iPYrazine Three germs layers,
Teratomas

[43]

30 Human foreskin fibroblasts Human pDNA for reprogramming factors Cardiac myocyte [44]

31 Different types of
fibroblasts

Human Synthetic modified mRNA Myogenic cells [12]

32 Skin fibroblasts Monkey Oct4, Sox2, and Klf4 Neuronal cell types [45]

33 Adult fibroblasts Mouse Proteins based reprogramming factors Three germs layers [46]

34 MEF Mouse Nr5a2shRNA – [47]

35 Human cord blood Human OSKM factors Germ layers, CMs [48]

36 CD34+ cells MPDs OSKM factors Hematopoietic
progenitor cells

[49]

37 Fibroblasts Murine Oct4, Sox2, c-Myc with Kenpaullone – [50]

38 MEF Mouse Esrrb shRNA – [51]

39 Pancreatic β cells Mouse OSKM factor – [52]

40 Fibroblast Mouse/
Human

OSK factor – [53]

41 Neural progenitor cells Mouse Klf4/Sox2/c-Myc and BIX01294 – [54]
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myelocytomatosis (c-Myc) belongs to the family of proto-
oncogenes that controls the cell cycle and cell proliferation
[94]. It recruits chromatin-modifying proteins to facilitate
open chromatin structure through histone acetylation and, in-
creases the expression of Oct4- and Sox2-regulated genes.
The use of c-Myc for iPSCs was associated with tumorigene-
sis and it was later shown that it can be replaced with
transformation-deficient L-Myc [95]. A modified protocol
was also developed that did not require the use of c-Myc for
iPSCs generation [53].

In human, Nanog and Lin28 were shown to be a good
substitute for Klf4 and c-Myc. Nanog is a homeoprotein and
is capable of maintaining pluripotency through Oct4 and is
independent of Sox2 and LIF/Stat3 [96]. Lin28 is a RNA
binding protein, which repress Let-7 miRNA influences trans-
lation machinery to regulate self-renewal of iPSCs [97]. A
number of other genes such as Glis 1, H1foo, Utf1, hTERT
in combination with one or more of OSKM or OSNL factors
have also been tested and found to be useful in derivation of
iPSCs in both human and mice [58, 59, 98]. In other studies,
cell deficient in one or more components of Arf-Trp53 path-
way [99], p53-p21 pathway [100], NuRD complex [37] were
also found be to better amenable to reprogramming by OSKM
or OSNL factors. However, among various reprogramming
factors, OSKM and OSNL remain to be the most commonly
used reprogramming factors in rodent and human, respective-
ly. The OSKMwith/without other factors have also been used
in other animal species such as pig and cattle with variable
degree of success.

A number of small molecules have also been investigated
to substitute for the reprogramming factors. Small molecules
are small molecular weight chemical compounds that can eas-
ily penetrate through the cell membrane and thus, does not
require complicated procedure of vector construction or
viral/ non-viral vectors. The dosage and duration of treatment
with small molecules can also be easily controlled and they
can be easily removed after initiation the reprogramming cas-
cade. Thus, they offer an attractive system for generation of
iPSCs. A number of small molecules such as GSK3-β inhib-
itors (e.g. CHIR99021, BIO, IQ-1), MEK/ERK inhibitors
(e.g. PD032501, Pluripotin or SC1, PD0325901), adenylyl
cyclase activators (e.g. Forskolin), TGFβ inhibitors (e.g.
A-83-01, SB43152, SB-431542, LY-364947), Tyrosin kinase

inhibitors (e.g. iPYrazine), Scr kinase inhibitors (e.g.
Dasatinib, PP1), ALK inhibitors (e.g. SB-431542, RepSox
or E-616452 , A-83-01) , ROCK inh ib i to rs (e .g .
Thiazovivin,Y-27632, HA-100), PI3K/Akt activators (e.g.
PS48), RAR agonists (e.g. CD437, AM580), mTOR inhibi-
tors (e.g. Rapamycin, PP242), Sirtuin activators (e.g.
Resveratrol, Fisetin) and epigenetic modifiers such as
DNMT inhibitors (e.g. 5-Azacytidine, RG-108, Decitabine),
HDAC inhibitors (e.g. Trichostatic A, Valproic acid, Sodium
Butyrate, SAHA), Histone methyltransferase G9a inhibitors
(e.g. BIX0129), global histone methylation inhibitor (e.g. 3-
deazaneplanocin A or DZNep), Lysine-specific demethylase1
inhibitors (e.g. Parnate), histone H3K79 methyltransferase in-
hibitors (e.g. EPZ004777, SGC0946) were found to be useful
in induction, promotion or acceleration of reprogramming or
in enhancing the self-renewal and survival rate of iPSCs. Li
et al. [40] found that iPSCs could be generated using Oct4
only when combined with a HDAC inhibitor (valproic acid),
a histone H3K4 demethylation inhibitor (tranylcypromine), a
GSK3-β inhibitor (CHIR99021) and a TGFβ inhibitor
(616452). Later, the same group had identified three other
small molecules viz. Forskolin (adenylyl cyclase activator),
2-methyl-5-hydroxytryptamine, and D4476, which could re-
place the requirement of Oct4. Thus, the seven small mole-
cules together can reprogram the somatic cells into iPSCs
without the need of OSNL or OSKM factors [38]. In other
studies, combination of PD0325901, CHIR99021, A-83-01,
HA-100 and LIF [42] or AM580, EPZ004777, SGC0946, and
5-Aza [36], or CHIR, Forskolin, 616,452 and DZNep [34] or
cyclic pifithrin-a, A-83-01, CHIR99021, thiazovivin, sodium
butyrate and PD0325901 [35] were found to be sufficient for
generation of iPSCs without the need of reprogramming
factors.

The small molecules can also be used in combination with
OSNL or OSKM factors to improve the efficiency of
reprogramming. A number of small molecules such as
Curcumin , Vi tamin C, LY294002 , Spermid ine ,
Dexamethasone, Quercetin, N-oxaloylglycine, 2,4-dinitro-
phenol, 2-Hydroxyglutaric acid, Nicotinic acid, Fructose 6-
phosphate, Anisomysin, Lithium Chloride, PKC inhibitors,
DNMT inhibitors, HDAC inhibitors, GSK3-β inhibitors,
MEK/ERK inhibitors, G9a inhibitors were found to enhance
the efficiency of reprogramming or promoting the completion

Table 1 (continued)

S.
No.

Types of cell Species Method used Differentiation References

42 MEF Mouse cDNAs for OSKM factors – [55]

43 MEF or adult fibroblasts Mouse OSKM factors Three germ layers [4]

MEFMouse embryonic fibroblast,MPDsHumanwithMyeloproliferative disorders, CMs-cardiomyocytes,ESCEmbryonic stem cell,PBMC Peripheral
blood mononuclear cells, AFDSC Amniotic fluid derived stem cells
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of reprogramming process. In fact, some small molecules
could be used to replace the need of one or more
reprogramming factors. For example, BIX01294 could re-
place Oct4 in reprogramming the neural stem cells to iPSCs
[54]. Similarly combination of Forskolin, 2-methyl-5-
hydroxytryptamine and D4476 could replace the requirement
of Oct4 for iPSC generation [38]. In other studies,
Kenpaullone, could replace the need of Klf4 [50] whereas
616,452 [101], iPYrazine [43], Dasatinib [101], PPI [43],
SB-431542 and LY-364947 [102] could replace the need of
Sox2 for iPSC generation. The use of small molecules also
reduced the duration of reprogramming from 40 days to
16 days as it did not require several days for selection of cells
and construction of vectors. Furthermore, it could overcome
the possibility of tumerogenesis associated with viral vector
methods of iPSCs generation. However, the efficiency of
reprogramming and the ability of iPSCs generation using
small molecules varied with cell types and cell lines and, re-
quired optimization in selecting the type of small molecule
and their treatment regimen [103]. Identification of newer
molecules and elucidation of their mechanism of action are
active areas of research. A detailed review on various small
molecules for generation of iPSC can be found elsewhere
[104].

Applications of iPSCs

The iPSCs have found application in various therapeutic
areas, including orthopaedics, dental medicine, treatment of
wound and injuries, cardiology, neurology, immunology, in-
flammatory diseases, ontology and metabolic diseases. A
number of studies have demonstrated the use of human
iPSCs to create functional cells, which upon transplantation
into rodent models, could restore the functionality of the af-
fected organs. For example, it has been shown that functional
retinal pigment epithelium cells could be generated from hu-
man iPSCs. When these iPSCs-derived retinal epithelia were
transplanted into the eye of disease rodent model or in human,
the transplanted cells resulted in long-term preservation of
vision (Li et al., 2012). Similar results were also observed in
human clinical trials wherein transplantation of iPSC-derived
retinal pigment epithelium cells improved the vision of pa-
tients affected with macular degeneration [105]. Human trials
have also shown success with transplantation of iPSC-derived
neurons in patients affected with Parkinson’s Disease [106]
and other clinical trials are ongoing for spinal cord injury and
heart failure patients [107]. In case of genetic diseases, it is
also possible to correct the genetic defects or mutations in the
iPSCs before their targeted differentiation and transplantation.
Hanna et al. [108] showed that fibroblast from mouse model
of sickle cell anemia could be reprogrammed to iPSCs and
corrected for the mutation in the hemoglobin allele by gene

targeting. The in vitro differentiation of iPSCs into
hemotopietic progenitors and subsequent transplantation into
the bone marrow of the diseased mouse (irradiated by gamma
irradiation to deplete endogenous proliferating cells in the
bone marrow) showed that ~70% of peripheral blood cells
were iPSCs-derived. The correction of sickle cell anemia in
this study laid the foundation for treatment of genetic diseases
by iPSCs-based therapy. Consequently, iPSCs-based therapy
has attracted great commercial interest. The current stem cell
therapy has an estimated market size of ~$750 million and is
expected to increase to ~$11,000 million by year 2030 at a
projected compound annual growth rate (CAGR) of ~28%.
Countries such as USA, Canada, Germany, United
Kingdom, France, Italy, Australia, China, South Korea are
leading in iPSCs research whereas it is slowly picking up in
India, Middle East, Africa and Latin America. Companies
such as Astellas Institute for Regenerative Medicine,
CellSeed Inc., California’s Stem Cell Agency, Fujifilm
Cellular Dynamics Inc., PBS Biotech Inc., Regenerative
Patch Technologies LLC, Reliance Life Sciences Private
Limited, Stempeutics Research Private Limited, ViaCyte
Inc., Vericel Corporation, WiCell Research Institute etc. are
actively involved in the stem cell research and many of them
are aiming to capture the global market of iPSCs-based ther-
apeutics worldwide (Box 1). With growing market, various
regulatory agencies of different countries such as USA
(Food and Drug Administration’s Center for Biologics
Evaluation and Research), Canada (Health Canada), Japan
(Pharmaceuticals and Medical Devices Agency), South
Korea (Korea Food and Drug Administration), China
(National Medicinal Products Administration), India (Central
Drugs Standard Control Organization) have classified the
iPSCs-based therapy as drugs and framed regulatory policies.
However, many developing is yet to have a comprehensive
regulation on stem cell research and their therapeutic
application.

Box 1 Market segment of stem cell therapeutics. Including
iPSCs

Major Therapeutic Applications Leading Countries

Cardiology Australia

Dental Medicine Canada

Immunology China

Inflammatory Diseases France

Metabolic Diseases Germany

Neurology Italy

Oncology Japan

Orthopaedics South Korea

Wound and Injuries UK

USA

Emerging (India, Middle East, Africa,
Latin America)
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Important Companies

AlloSource Medipost Company Limited

Anterogen Company Limited Mesoblast Limited

Astellas Institute for
Regenerative Medicine

Nu Vasive Inc.

Athersys Inc. Orthofix Inc.

Asterias Biotherapeutics Inc. Osiris Therapeutics Inc.

California’s Stem Cell Agency PBS Biotech Inc.

CellSeed Inc. Regenexx

Chiesi Farmaceutici SPA Regenerative Patch Technologies LLC

Chorestem Inc. Realiance Life Sciences Private
Limited

Coreill Institute Stempeutics Research Private Limited

Fujifilm Cellular Dynamics
International

Takeda Pharmaceutical Company
Limited

JCR Pharmaceuticals Company
Limited

US Stem Cell Inc.

Lineage Cell Therapeutics Vericel Corporation

ViaCyte Inc.

The iPSCs has also been used to model various genetic and
metabolic diseases such as Schizophrenia, Hyperglycinemia,
Retinitis Pigmentosa, Parkinson’s Disease, Autism Spectrum
Disorder, Amyotrophic Lateral Sclerosis etc. The specific cell
types can be derived from disease-affected patients by direct-
ed differentiation of donor’s iPSC and manipulated in vitro to
study the underlying pathophysiology and signaling mecha-
nism involved in the causation of the disease. For example,
Akkouh et al. [62] derived the iPSCs from human
Schizophrenia patients and differentiated them into astrocytes,
which could be used for studying the involvement of
astroglia-CCL20-CCR6-T(reg) axis in the pathophysiology
of Schizophrenia. On the other hand, Atchison et al. [68]
could isolate iPSCs from human patients, suffering from
Hutchinson-Gilford Progeria Syndrome, and differentiate
them into smooth muscle and endothelial cells for developing
blood vessels by tissue engineering. Thus, the iPSCs approach
provides a good substitute for the animal models by eliminat-
ing idiosyncrasy and minimizing the variation in results due to
cross-species differences or due to difference in cell signaling
mechanism in disease causation. The use of human iPSCs can
also reduce the number of animals required for experimenta-
tion and improve the success of clinical trials.

The iPSCs from normal individual can also been differen-
tiated into homogeneous population of difficult-to-obtain cell
types for studying the etiology and treatment of diseases. Ali
et al. [78] generated human iPSCs from PBMC and differen-
tiated them into lens-like lentoid bodies. Akita et al. [109]
differentiated mouse iPSCs into cardiomyocytes (CMs) and
used them as model to study the usefulness of Lubiprostone, a
chloride channel opener, in the treatment of cardiac diseases.
Ana s t a s ak i e t a l . [ 66 ] deve l oped iPSCs f r om
Neurofibromatosis type 1 patients to identify differential ef-
fects of NF1 mutations on central nervous system. In other

studies, fibroblast cells (from human foreskin, Skin and
Dermal fibroblast) have been successfully converted into
iPSCs and further differentiated into insulin producing cells
(IPCs) for the treatment of diabetes [110–113]. Thus, it is
expected that discoveries made using iPSCs will change the
era of drug development or other therapeutic interventions.
Considering all these factors, iPSCs are being explored by
scientist as possible time-, resources- and cost- saving alterna-
tives. The iPSCs are considered as multi-purpose tool for bio-
medical research and the technology is continually evolving in
parallel with the development of disease modeling and drug
development studies.

Application of iPSCs in Cardiac Regenerative Medicine

Cardiovascular diseases (CVDs) due to Myocardial Infarction
(MI), Myocardial Ischemia, Atherosclerosis, Arrhythmia,
Cardiomyopathies, Heart valve disease, and Long–QT syn-
dromes (LQTS) are major cause of death all over the world.
The World Health Organization (WHO) estimated that, ~17.5
million populations per year of all global death are due to
CVDs and is estimated to rise up to ~23 million by 2030
[114]. Despite significant research in the treatment of CVDs,
including heart surgery, heart transplant, ventricular assist de-
vice implantation etc., it remains a major therapeutic chal-
lenge. Since most CVDs are associated with damage to cardi-
ac and vascular cell by apoptotic and necrotic processes [115],
stem cell-based therapy is rapidly emerging as a new thera-
peutic approaches for the treatment of CVDs [116].

The iPSCs can serve as a basis for autologous cell-
replacement therapy in CVDs. The easily accessible cells such
as fibroblasts or PBMCs can be collected from the diseased
patient and reprogrammed into iPSCs to produce CMs, endo-
thelial cells, muscles and other heart cells by directed differ-
entiation. The differentiated cells can then be used as thera-
peutic cells for transplantation by cardiomyoplasty or after
development of tissue engineering constructs (Fig. 1). Since
the somatic cells for iPSCs generation originates from the
patient’s own body, iPSCs-derived heart cells are less prone
to immune rejection and ethical issues. Consequently, post-
transplantation regimen for immunosuppressive drugs can be
minimized. In case of genetic diseases, it is also possible to
correct the genetic defects or mutations in the iPSCs before
their targeted differentiation and transplantation.

The iPSCs-derived CMs can also be used to effectively
mitigate the cardiac disease under in vitro condition and de-
velop novel drugs or to understand the pathophysiology of the
cardiovascular diseases [109]. The iPSC-derived CMs can be
readily generated from patient-derived somatic cells and can
be cultured and maintained indefinitely as homogeneous pop-
ulation of cells for drug testing or disease modeling (Table 2).
For example, familial dilated cardiomyopathies, caused by
mutation in TTN, TNNT2, LMNA, MYH7, MYH6, SCN5A
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could be recapitulated in vitro in their morphological and
functional phenotypes of dilated cardiomyopathies by
iPSCs-derived CMs to serve as platform to understand the
underline disease mechanism of drug screening [128].
Similarly, iPSC-derived CM was used to develop a disease
model of LQTS caused by autosomal dominant disorder of at
least 15 gene mutations [129, 130]. Use of iPSC-CMs in
modeling cardiac diseases and drug screening are reviewed
elsewhere [131, 132].

The therapeutic potential of iPSCs through their autologous
in vivo transplantation in animal models of CVDs has been
well documented in several studies [117, 133]. Autologous
transplantation of iPSCs-derived CMs not only improved the

contractile function of severely damaged myocardium in ani-
mal models of MI but also improved the cardiac bioenergy
[118]. On the other hand, allogenic transplantation of animal
iPSC-derived cells into immunodeficient mouse models ofMI
and hindlimb ischemia was also shown to have beneficial
effect on cardiovascular function [134, 135]. The utility of
human iPSCs in the treatment of CVDs has also been demon-
strated using SCID mouse or immunosupressed non-rodent
models, including primates (Table 2). These studies have
clearly established that cardiac function could be improved
by transplantation of iPSC-derived CMs in diseased heart.
However, the mechanism of beneficial effects remains debat-
able. Some studies have suggested that the improvement in

Fig. 1 An outline of steps
involved in the application of
iPSCs-derived cardiomyocytes in
cardiac regenerative medicine

Table 2 Application of iPSCs in different heart diseases/syndromes

Cells Transplanted in Application References

iPSCs-derived CMs Rat Myocardial Infarction [117]

iPSCs-derived CMs Pig Myocardial Infarction [118]

iPSCs-derived hepatocytes FH Model Cholesterol metabolism [119]

iPSCs-derived extracellular vesicles Mice Cardiac repair [120]

iPSCs-derived CMs Transgenic mice Cardiomyopathies [121]

iPSCs – Muscular Dystrophy [122]

iPSCs-derived muscles cells – Blood Vessel Model [123]

iPSCs-derived CMs Rats Biological pacemaker [124]

iPSCs-derived CMs Monkey Infracted heart [125]

iPSCs-derived CMs Immunodeficient mice Therapeutic Potential in Heart [126]

iPSCs Pig Chronic Myocardial Ischemia [127]
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cardiac function may be due to paracrine effects through se-
cretion of cytokines and not due to iPSC-CM per se [136]. A
few studies have also used non-rodent large animals such as
sheep and pigs but engraftment of human iPSC-derived CMs
has been poor [137, 138]. Furthermore, transplantation in
large animal models was also associated with ventricular ar-
rhythmias, which was not frequently reported in rodents, per-
haps due to their rapid heart rate [125, 139]. Interestingly, the
intramyocardial engraftment could be improved by co-
injection of MSCs [137] or injection through IGF-
encapsulated microspheres [138]. More recently, Yoshiki
Sawa and colleagues from Osaka University have received
the approval for a clinical trial to graft iPSCs derived alloge-
neic sheets onto diseased hearts of three patients in a year and
later can be trial on ten patients [140]. More than 50 iPSCs
clinical trials are registered with ClinicalTrials.gov.
Unfortunately, there are several hurdles to in vivo
transplantation of iPSC-derived CMs for CVDs, which are
reviewed elsewhere [141].

Generation of Cardiac Cells from Stem Cells

An ideal cell source for cardiac tissue engineering and regen-
erative medicine is the one which is easily available in suffi-
ciently large numbers and is capable of differentiating into
contractile, non-immunogenic and electro-physiologically
compatible myocardium. Primary CMs are the first choice of
cells but they have minimal proliferative capacity and are
difficult to obtain in large numbers. Therefore, alternative cell
sources such as cardiac stem cells (CSC), cardiac progenitor
cells (CPC), ESC, iPSCs, hematopoietic stem cells (HSC),
mesenchymal stem cells (MSC), male germ-line stem cells
(GSC) etc. have been investigated to derive and provide large
number of CMs required for regenerative medicine and cardi-
ac tissue engineering (~105 cells/cm3).

Cardiac stem cell (CSC) and progenitor cells (CPC) are
found in the pharyngeal mesoderm, called as secondary heart
field, and in neural crest of the fetal heart [142]. In adults, they
may occur as small cluster of self-renewing, clonogenic cells
interspersed between terminally differentiated CMs [143].
These cells are multipotent in nature and can differentiate into
beating CMs upon treatment with oxytocin [144, 145].
Combined delivery of pericytes and CSCs was shown to im-
prove the healing of mouse infracted heart through stimulation
of vascular and muscular repair by secreting various growth
factor and higher quantities of angiopoietins and microRNA-
132 [146, 147]. CPCs have also been successfully used to
generate beating thin films [148] or thick tissue by 3D printing
technology [149]. However, CPCs exist in low numbers and
are difficult to obtain as pure population of cells in sufficient
numbers required for the regenerative medicine [150].

Embryonic stem cells (ESC) are isolated from early stage
embryos and are considered as ‘gold standard’ for pluripotent

stem cells. Authentic ESCs have been successfully isolated in
both human and animals and are commercially available as
cell lines for research purpose [151]. They are capable of
differentiating into cells of all three germ layers including
those of the heart. A number of studies have reported success-
ful differentiation of ESCs into CMs by generation of embry-
oid bodies (EBs) and treatment with retinoic acid, ascorbic
acid , f ibroblas t growth factor , n icot inamide, 5-
azadeoxycytidine etc. [152, 153]. Pure population of ESC-
CMs can be cultured in large scale in advanced bioreactor
systems that can provide physical cues to mimics in vivo con-
ditions for heart development [154]. Thus, they have become
the most attractive cell source for cardiac tissue engineering.
Several researchers have been successfully developed cardiac
patches [155, 156] and 3D cardiac tissue construct using ESCs
[157]. However, in clinical settings, use of ESC-derived CMs
may pose potential risk of immunogenicity and uncontrolled
differentiation into teratoma. There are also ethical issues as-
sociated with their derivation which limits their clinical appli-
cation in human [158]. Use of patient specific ESCs, derived
from parthenogenetic embryos or somatic cell nuclear transfer
(SCNT), may obviate some of the issues of immunogenicity
[159, 160]. Nevertheless, clinical application of ESCs and
their derivatives are currently prohibited in almost all coun-
tries until above issues are fully resolved.

Adult stem cells (ASC) such as hematopoietic (HSC) and
mesenchymal stem cells (MSC) have also been investigated as
alternative to ESCs for generation of CMs. Clinical-grade
HSC and MSC can be isolated from bone marrow by means
of GMPs. MSCs can also be isolated from umbilical cord,
Wharton’s jelly, adipose tissue, amniotic fluid, chorionic villi,
placenta, dental pulp etc. in adults and does not pose immu-
nogenic or ethical problems. Clinical trials have shown that
administration of MSCs to MI patients improved the ejection
fraction and left ventricular volumes [161]. Several animal
models have also demonstrated successful differentiation of
MSCs into CMs in vivo [162–165] and therefore MSCs ap-
pears to be an attractive cell source for CMs. However, there is
conflicting report on the ability of HSC and MSCs on their
ability to differentiate into CMs. While some reported in-
creased the expression of CMs markers and differentiation
of MSCs into spontaneously beating cells by treatment of
MSCs with 5-Azadeoxycytidine, a DNA demethylation agent
[166–168], others reported no benefit of 5-Azadeoxycytidine
treatment on differentiation of MSCs into CMs [169]. Other
methods such as use of platelet rich plasma (PRP) [170], TSA
[171], platelet-derived growth factors (PDGF) [172], serum
source [173] and co-culture with CMs [174, 175] have also
used either alone or in combination with 5-Azadeoxycytidine
for differentiation of MSCs into CMs. It is believed that the
improvement in cardiac function through HSC or MSCs cell
transplantation is due to the secretion of soluble factors by
these cells and activation of Wnt signalling pathways [176],
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rather than transdifferentiation [177]. In our study, we found
thatMSCs, isolated from umbilical cordmatrix by explant and
enzymatic digestion method, differentiated into cardiac cells
upon treatment with 5-Azacytidine. Upon treatment with 5-
Azacytidine, cells enlarged, assumed elongated appearance
and were connected with adjacent cells to become multinucle-
ated [178]. After 10–15 days cells start forming small clusters
and by 21 days, thick clump-like structure resembling cardiac
myocytes were observed. The differentiated MSCs expressed
α-actin, cardiac troponin, smooth muscles actin (SMA),
myogenin, and smoothelin but spontaneous beating of cell
was not observed [178].

Germ line stem cell (GSC)/Spermatogonial stem cell
(SSC) in testis have also been viewed as a potential source
of CMs [179, 180]. Under appropriate culture conditions,
GSCs can acquire pluripotency to become germ-line plurip-
otent (GPSC) or multipotent adult germ-line stem cells
(maGSC), which can differentiate into cells of all three germ
layers including beating CMs [180–182]. The Flk+ CMs de-
rived from maGSCs showed similar gene expression pattern,
responsiveness to isoproterenol and electrical properties as
obse rved wi th CMs de r ived f rom ESCs [179] .
Transplantation of maGSCs enhanced left ventricular wall
thickness, ejection fraction, systolic velocity and angiogene-
sis in ischemic heart of mouse [183] and after four week of
treatment small number of CMs was observed in ischemic
area of mice. The mGSC-derived CMs expressed cardiac-
markers such alpha cardiac actinin, conexin-43, cardiac tro-
ponin T, and tropomyosin similar to the ESCs derived CMs.
The maGSCs can also differentiate into vascular endothelial
and smooth muscles cells without tumour formation [184]
and therefore, form a good alternative to ESCs for cardiac
tissue engineering [185]. In our studies, mouse maGS cells
could be successfully differentiated into beating CMs [186].
However, the concentration of SSCs in testis is very low and
their isolation protocols in human has not been standardized.
Thus, further studies are required to utilize the potential of
GSC and SSCs in regenerative medicine and cardiac tissue
engineering.

Generation of Cardiac Cells from iPSCs Differentiation of
iPSCs into cardiac lineage requires step-wise approaches to
mimic the cell signaling process during cardiac development
in vivo. Under in vitro conditions, iPSCs can be differentiated
into CMs through embryoid body (EB) formation and modu-
lating the Activin/Nodal/TGFβ, Wnt/β-Catenin and BMP
signaling pathways, similar to those used for directed differ-
entiation of ESCs. In vitro culture of iPSCs in hanging drops
using a serum-free medium leads to the formation of cavity-
containing EBs, which can then be treated with differentiating
agents such as activin A and bone morphogenetic protein 4
(BMP4) and trichostatin A (TSA) [187]. Cardiac differentia-
tion can also be achieved in a 2D monolayer culture on ECM

proteins (e.g. Matrigel™) or feeders cells such as endoderm-
like cells (END-2) [188], fibroblasts [189] or OP9 stroma cells
[190], which produces activin-A and BMP. Among several
developments, inhibitors of Wnt signaling pathway were
found to be most favorable for derivation of CMs in combi-
nation with activin A and BMP4. However, clinical-scale car-
diac differentiation is only possible with scalable platforms
such as bioreactors. In addition to allowing the production of
large numbers of CMs, bioreactors provide additional advan-
tages such as homogeneity of the vessel contents, ensured by
dynamic culture condition, typically provided by a mechani-
cal impeller, as well as monitoring and control of culture var-
iables, such as pH and dissolved oxygen. Cardiac differentia-
tion of iPSCs in suspension has already been described on a
number of studies, either growing the cells attached to
microcarriers [191] or as aggregates [192–194]. Suspension
protocols based on temporal modulation of Wnt signaling can
generate over 90% cTNT+ cells [192]. This protocol can be
further improved by activation or inhibition of other signaling
pathways [193], or by integration with additional steps for CM
purification (e.g. through metabolic selection with lactate) and
recovery [191]. Halloin et al. [194] developed an integrated
protocol based only on the use of low-cost, xeno-free media
for both expansion (E8) and cardiac differentiation (CDM3),
allowing for the production of about 1 × 106 iPSC-CMs/mL at
a purity of at least 90% cTNT+ cells. This is an important step
towards GMP production of CMs at a more affordable cost.
Alternatively, if the cells are to be used for drug screening or
disease modelling, small-scale, high-throughput systems may
be desirable, to perform simultaneous testing of various dif-
ferent conditions. Although, to the best of our knowledge,
cardiac differentiation of iPSCs has yet to be described on
microfluidic systems, these have already been shown to sus-
tain CM culture [195, 196].

The efficiency of cardiac differentiation can further be
improved by using small molecules such as inhibitors of
TGFβ/activin/nodal signaling (e.g. SB431542; [197]) or
p38MAP kinase (e.g. SB203580, [188]) or activation of
Wnt/β-Catenin signaling (e.g. CHIR99021, [198]. Methods
have also been developed to obtain CMs differentiation by
using small molecules alone [199]. Hatani et al. [200] dem-
onstrated an efficient methodology for differentiating iPSCs
into CMs using EBs with the help of dorsomorphin and
SB431542. Several studies have now shown that the CMs
derived from human ESCs and iPSCs do not differ signifi-
cantly with respect to sarcomeric organization, cardiac gene
expression, responsiveness β-adrenergic stimulation, beat
rate variability and power law behavior [2, 3, 152].
Consequently, a number of studies have used iPSCs as an
alternative to ESCs for CTE [201]. Derivation and differen-
tiation of iPSCs into CMs are shown in (Table 1). A detailed
review on various protocols for in vitro differentiation of
CMs from stem cells is available elsewhere [202].
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The stem cell-derived CMs are occasionally a heteroge-
neous population of CMs, smooth muscle cells, fibroblasts
and endothelial cells and may require an enrichment or puri-
fication step. In earlier studies, density gradient centrifugation,
use of molecular markers introduced through genetic modifi-
cation or fluorescence-activated cell sorting (FACS) of
mitochondria-rich CMs, identified by intense staining of
MitroTracer Red™ dye, were found to be useful in enrich-
ment of stem cell-derived CMs. In later studies, FACS or
magnetic assisted cell sorting (MACS) of CMs by using
monoclonal antibodies against VCAM1 [203] and SIRPα
[204](Dubois et al., 2011) were also found to be suitable for
purification of iPSC-derived CMs. In another study, Miki
et al. [205] showed that synthetic miRNA switches can also
be used for purification of CMs. ThemicroRNA (miR-1, miR-
208a andmiR-4991-5p) switches were shown to be capable of
enriching stem cell-derived CMs. However, these strategies
require expensive equipment or are tedious and not possible
under clinical settings. Tohyama et al. [206] showed that cul-
ture of stem cell-derived CMs in glucose-depleted culture me-
dium supplemented with lactate allowed the preferential
growth of CMs over non-CM cells and hence could be a good
selection medium for CMs. The same group also showed that
glutamine was essential for the growth of undifferentiated
stem cells and therefore, glucose- and glutamine-depleted me-
dium supplemented with lactate may be more suitable for
purification of CMs [207]. More recently, Zhang et al. [208]
have generated human iPSCs with double reporter system,
which can delineate different lineages of cardiac cells.
However, which such systems are very useful for research
purpose, they cannot be used for therapeutics. The FACS/
MACS-based cell sorting and lactate-based purification
methods are currently favored by most researchers.

The purified populations of stem cell-derived CMs may
still be functionally heterogeneous. The CMs in atrium, ven-
tricle and conduction system of heart have different
electroconductive property and contractility. Thus, to be able
to use for correcting ventricular defect, the iPSC-derived CMs
must be terminally differentiated to ventricular type of CMs.
Studies have shown that most differentiation protocol for stem
cell-derived CMs are biased for ventricular type of CMs and
can become atrial- or nodal-like CMs by treatment with
retinoic acid [209] or manipulation of BMP and retinoic acid
signaling [124], respectively.

Maturation of iPSC-Derived CMA crucial requirement for clin-
ical application of iPSC-derived CMs is the level of matura-
tion of the cells. The iPSC-derived CMs should mimic adult
CMs in their electrical conductivity, contractility and response
to environmental stimuli, such as neurotransmitters, hormones
and pharmacological substances. These maturation events oc-
cur in vivo over a period of several years but have to be
recapitulated in vitro over a few days or weeks.

There are several important differences between adult CMs
and those obtained from iPSC differentiation in vitro, which
typically resemble fetal CMs [210–212]. In particular, in
terms of morphology, while adult CMs are large, rod-shaped,
multinucleated/polyploid cells, iPSC-derived CMs are small-
er, rounder and mononucleated. Structurally, iPSC-derived
CMs show immature phenotype of myofibrillar organization,
sarcomeric element and ill-developed intercalated discs [211,
213, 214]. The iPSC-derived CM presents disorganized sar-
comere, in contrast to the highly organized sarcomeres in na-
tive CMs. In terms of metabolism, iPSC-derived CM typically
rely on glycolysis for energy production, using glucose as the
major energy source, whereas native CMs are known to rely
on glycolysis during early development but shift to fatty acid
β-oxidation upon maturation. Thus, iPSC-CMs seems to be
immature in their metabolic profile [212, 215, 216]. Also,
CMs with different levels of maturation have differences in
terms of electrophysiological properties and calcium handling
[211, 212]. On the contrary, The iPSCs- CMs may displayed
atrial, nodal or ventricular like action potential [212] and the
stimulated force required for beating of iPSC-derived CMs are
in the range of 0.08–4 mN/mm2, which is much lower than
those of adult CMs (40–80 mN/mm2). Thus, optimization of
electrophyiological parameters is necessary for maturation of
iPSCs-derived CMs and is experimentally and technically
challenging.

Strategies to create a micro-environment capable of mim-
icking the in vivo CM maturation include delivery of growth
factors [217, 218] and hormones[219], co-culturing with other
cells [220, 221], providing ECM support [222, 223], aggrega-
tion and 3D culture [224], electrical stimulation [225] and
long cultivation [217, 226]. In a recent study, Kolanowski
et al. [227] developed a microfluidic system that provided
topological cues for maturation of iPSCs-derived CMs by cy-
clic pulsatile hemodynamic forces. In another study, topolog-
ical cues were provided by culturing the iPSCs-derived CMs
on the surface of Polyethylene Terephthalate Textiles to im-
prove the maturation [228]. Incremental improvements in
iPSCs-derived CMs maturation may be possible by combin-
ing several of the above mentioned approaches [229].

However, the level of maturity required for regenerative
medicine applications of iPSC-derived CMs is not yet
completely defined. There is an interest in generating CMs
which are able to recapitulate in vivo-like characteristics for
engraftment, in order to facilitate host-graft cell coupling, to
have appropriate contractile performance and to avoid side
effects such as arrhythmias, which were reported in transplan-
tation studies [125]. Conversely, since the proliferative ability
of these cells decreases with their maturation, adult CMs have
been shown not to be able to survive upon transplantation
[230]. This suggests a partial but not excessive maturity to
be ideal for iPSC-derived CMs. However, this presents anoth-
er problem. Since CMs undergo a variety of changes
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throughout their maturation, there still is not a clear metric to
indicate the extent of this process [231]. As such, advances in
the production of iPSC-derived CMs that can be usable in
regenerative medicine will require not only objective methods
of measuring maturity, but also, following establishment of
this methods, studies on the ideal level of maturity for these
cells.

Application of iPSC-Derived CMs for Cardiac Tissue
Engineering

The iPSCs-derived CMs and other cardiac cells can be used to
treat the CVDs either by cardiomyoplasty or through devel-
opment of tissue engineered cardiac constructs. Studies have
shown that direct intra-myocardial injection of allogenic
iPSCs-derived CMs into the infracted heart of monkey could
improve the cardiac function without immune rejection during
the 12 weeks of study period [125]. In order the improve the
functionality of the injected human iPSCs-CMs, trililneage
injection with endothelial and smooth muscle cells has also
been attempted along with transplantation of a fibrin patch
loaded with insulin growth factor [232]. Such trilineage cell
transplantation strategy was found to improve the integration
of cells into the host myocardium and improve the ventricular
function in pig models. However, a long-term follow up was
not done. Most studies have shown that transplantation of
iPSCs-CMs, with or without endothelial cells, fibroblast and
smoothmuscle cells, could integrate into the host myocardium
but lead to cardiac arrhythmia upon long-term follow up. It
has been suggested that the short-term beneficial effects of
transplanted iPSCs-CMs may be due to release of cardio-pro-
tective, pro-angiogenic and anti-apoptotic factors by the
transplanted cells [136]. Using luciferase and GFP expressing
iPSCs-CMs, Ong et al. [233] showed that iPSCs-CMs have
low retention rate upon transplantation into mice model and
the improved cardiac function was due to their paracrine ef-
fects on neo-angiogenesis and reduced apoptosis. Thus, to
improve the long-term survival and retention rates of the
injected iPSCs-CMs, a number of bioengineering approaches
such as encapsulation in biomaterials, cell-sheet engineering,
seeding on scaffolds, 3D bioprinting etc. (Fig. 2) have been
investigated.

Studies have shown that encapsulation of iPSCs-CMs into
biocompatible hydrogels can improve their distribution and
retention upon injection into the heart. Several hydrogel
forming biomaterials such as fibrin, collagen, chitosan, algi-
nate, agarose, hyaluronic acid, methylcellulose have previous-
ly been used for encapsulation of ESC-derived CMs for myo-
cardial injection. Therefore, several researchers have also
evaluated the encapsulation of iPSCs in hydrogels and their
beneficial effects on ameliorating cardiac dysfunction.
Injection of human iPSC-CMs, encapsulated in PEG hydro-
gel, into infarcted heart improved the muscle content and

cardiac function of the rat, although no donor-derive cell
was detected after 10 weeks of injection [234]. To improve
the mixing of iPSCs-CMs and facilitate their injection into
myocardium through a syringe, thermo-sensitive hydrogels
have also been used. A hydrogel formed from copolymer of
PEC-PCL and conjugated with a collagen-binding peptide
remain in solution form at room temperature and can easily
be mixed with the human iPSCs [235]. When these iPSCs-
CMs loaded solutions were injected into infarcted myocardi-
um of rat, it formed a hydrogel and improved cardiac structure
and function. More recently, an injection device was also de-
veloped for homogeneous distribution of human iPSCs-CMs
spheroids and their injection into myocardium [236].
Encapsulation of human iPSC-CM spheroids in gelatin
hydrogels and their epicardial injection into pig heart using
the newly developed device showed better distribution and
retention of cells than direct injection of iPSCs-CMs.

The iPSCs-derived CMs can also be developed cardiac
patches by cell-sheet engineering or using polymer molds.
Multi-layered cardiac tissue sheets have been prepared by
stacking multiple numbers of CMs sheets grown on culture
dishes coated with temperature-responsive poly(N-
isopropylacrylamide) [237]. Transplantation of such human
iPSCs-CMs derived cell sheets into infracted heart restored
the cardiac function for up to 8 weeks in pigs [238]. Similar
results were also observed upon transplantation of human
iPSCs-CMs derived cell sheets in mice [239]. Unfortunately,
transplantation of these iPSCs-CMs derived cell sheets result-
ed in limited success and the cells either disappeared at a later
stage [238] or lead to arrhythmia due to immaturity of the cells
[239]. Furthermore, cell sheets were difficult to handle and
suture into the myocardium during surgical intervention. In
order to overcome these issues, thick 3D myocardial tissue
were fabricated from human iPSCs by cell-sheet engineering
followed by a polysurgery strategy [240]. The method could
also bemodified to produce tubular cardiac tissue from iPSCs-
CMs by wrapping the triple-layered cell sheets around the
inferior vena cava of nude rats [241]. Newer perfusion biore-
actors have also been developed by the same group of re-
searchers for in vitro culture of cell-sheet derived 3D tissue.
The technology is patented and licensed to CellSeed Inc. for
commercialization.

In another approach, cardiac patches have been developed
by mixing iPSCs-derived CMs in a hydrogel solution contain-
ing fibrinogen, Matrigel™ and thrombin and molding them in
a pluronic-coated PDMS molds [242]. The cardiac patches
could be scaled to larger dimensions required for clinical
transplantation and, upon transplantation into nude mice,
could engraft and maintain their electrical function. In yet
another approach, cardiac patches have been developed by
entrapment of iPSCs-CMs on fibrin gels. These patches could
be directly applied on the damaged heart tissue and were
found to improve the cardiac function in rat [243] and guinea
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pig [244] models of myocardial infarction. However, iPSCs-
CMs grown on fibrin sheets were also found to migrate into
other tissues such as lung and spleen, as were observed in
cardiomyoplasty and therefore, needs improvement.

For surgical application, a cardiac patch should be suffi-
ciently thick (~1 cm) to replace the myocardium and should
have sufficient mechanical strength so that it can be held in
hand or surgical instrument while applying on the heart. At the
same time, the patch should be contractile, vascularized and
electro-conductive to integrate into the host myocardium
(reviewed in [245]). The “classical” tissue engineering ap-
proaches have previously been successful in the development
of human tissues such as trachea, blood vessels, skin replace-
ments, bladder replacements and cartilage replacements
(reviewed in [246]). Several tissue engineered products are
already approved by the FDA and are available commercially.
Thus, such approaches have also been tried for the develop-
ment of 3D cardiac patches. In “classical” cardiac tissue engi-
neering approach, the stem cell-derived CMs are seeded on a
variety of biomaterial-based scaffolds and cultivated in biore-
actors to develop a 3D cardiac construct. Both fibrous and
porous scaffolds as well as hydrogel have been fabricated by
using a variety of techniques such as electrospinning, solvent
casting, salt leaching, soft lithography and micro-patterning
[247]. A number of natural biomaterials such as Collagen I,
fibrin, silk fibroin, chitosan, alginate and synthetic biomate-
rials such as poly-caprolactone (PCL), polyglycolic acid
(PGA), polyvinyl alcohol (PVA), polyvinyl pyrrolidone
(PVP), Poly-L-Lactic acid (PLA), polylactic co-glycolic acid

(PLGA) and polyglycerol sebacate (PGS) etc. have been used
for the development of scaffolds for cardiac tissue engineering
(Table 3) (reviewed in [280]). More recently, marine sponge
derived biomaterials have also been investigated for fabricat-
ing 3D scaffold for iPSCs-CMs [249]. Interestingly, common-
ly used printing papers, chromatography papers and nitrocel-
lulose membranes have also been tested as scaffold for devel-
opment of beating cardiac tissue from iPSCs-CMs [281].
Hybrid of natural and synthetic biomaterials has also been
used to improve the mechanical strength, electrical conductiv-
ity, hydrophilic nature and anisotropy of the scaffolds [275].
For example, coating of PLGA fibrous scaffolds with poly-
pyrrole (PPy) polymer could provide sufficient topological,
mechanical and electrical for differentiation of iPSCs into
CMs in both stimulated and unstimulated protocols [272]. In
other studies, Matrigel™ (Fig. 3) [264] or gelatin-coating of
nanofibrous 3D scaffold of PCL improved their hydrophilic
nature for cell attachment and resulted in better iPSCs prolif-
eration and CMs differentiation than those cultured as mono-
layer on tissue culture dishes [198]. Parallel-alignment of PCL
nanofibers in electrospun scaffolds could control the cell ori-
entation and mimic the architecture of the heart tissue (Fig. 4)
[264]. Seeding of iPSCs-CMs on aligned nanofibrous scaffold
of PLGA and culture on tissue culture plates also showed that
CMs can align themselves, establish gap junctions and show
improved electrical coupling [273].

Polymerix mixtures and 3D culture were also found to
improve the differentiation and functionality of tissue
engineered cardiac constructs. The iPSCs-CMs cultured on

Fig. 2 Various approaches of
cardiac tissue engineering using
iPSCs-derived cardiomyocytes
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PCL, PEG and carboxylated PCL mixture provided a better
culture system for matrix-integrin interactions for improved
contractility and maturation [282]. Similar benefits of combi-
natorial polymer on cell survival and functionality of iPSCs
were also observed with natural biomaterials such as collagen,
gelatin, laminin and heparin sulfate [283]. In other study,

scaffolds fabricated from collagen and fibrin blend was also
shown to improve the improved compaction and syncytia for-
mation in iPSCs-CMs [255]. Shadrin et al. [242] developed a
cardiac patch by differentiating iPSCs into CMs in a 3D cul-
ture, which showed excellent myocardial structure and elec-
tromechanical coupling comparable to the adult myocardium.

Table 3 Various biomaterials used for fabrication of scaffolds for cardiac tissue engineering

Biomaterials Co-polymer/ Cross-linker Purpose/ Type of Scaffold Seeded cell type References

Natural Biomaterials

Alginate PEG monoacrylate-fibrinogen 3D Bio-printed Scaffold iPSCs-CMs [248]

Chitin – Porous 3D Scaffold iPSCs-CMs [249]

Chitosan Polypyrrole Porous Scaffold CMs [250]

Collagen Elastin, PCL Cardiac Patch CMs [251]

Decellularized ECM Gelatin methacrylate Bio-printed Scaffold CPCs [252, 253]

ECM – CTE Scaffold iPSCs-CMs [254]

Fibrin Collagen Encapsulation in Hydrogel iPSCs-CMs [255]

Fibrin gel – Cardiac Patch iPSCs-CMs [243]

Fibrin glue – Cardiac Patch MSCs [256]

Gelatin – Encapsulation in Hydrogel iPSCs-CMs [236]

Gelatin (Photoactive) – 3D Bio-printed Scaffold iPSCs [257]

Gelatin methacryloyl Graphene oxide Encapsulation in Hydrogel CMs [258]

Omenta (Bioink) – 3D Bio-printed Scaffold iPSCs-CMs [259]

PEG – Encapsulation in Hydrogel iPSCs [234]

PEG-PCL Collagen binding peptide Encapsulation in Hydrogel iPSCs [235]

Soybean oil Epoxidized acrylate Bio-printed Scaffold MSCs [260]

Synthetic Biomaterials

PAA – Encapsulation in Hydrogel CMs [261]

PCL Gelatin Nanofibrous Scaffold MSCs [262]

PCL Polyethylene oxide Nanofibrous Scaffold iPSCs [263]

PCL – Nanofibrous Scaffold iPSC-CMs [264]

PCL – Nanofiber Cardiac cells [265]

PGS Fibronectin, Fibrin, Collagen Honeycomb Scaffold CMs, EC, Fibroblasts [266, 267]

PHA PCL Porous Scaffold CPCs [268]

PLA PEG, PANI Nanofibrous Scaffold Cardiac fibroblast [269]

PLGA Chitosan Porous CMs [270]

PLGA Gelatin-elastin Fibrous Scaffolds CMs [271]

PLGA PPy Nanofibrous Scaffold iPSCs [272]

PLGA – Nanofibrous Scaffold iPSC-CMs [273]

PLLA ECM proteins Nanofibrous Scaffold Cardiac fibroblast [274]

Polyaniline Polyetersulfone Nanofibrous Scaffold iPSCs [275]

poly(N-isopropylacrylamide) – Cell sheet engineering CMs [237]

PU Laminin or gelatin Micro-patterned Scaffold CPCs [276]

PVA Alginate Encapsulation in Hydrogel CMs [277]

PVA PVP Cardiac Patch CMs [278]

PPy Chitosan Encapsulation in Hydrogel CMs [279]

Tetraaniline-PEGD Thiolated hyaluronic acid Encapsulation in Hydrogel MSCs [262]

PEG polyethylene glycol, PLGA poly(L-glycolic acid), PCL poly(ε-caprolactone), PU Polyurethanes, PLLA Poly (L-lactic acid), PHA
Polyhydroxyalkanoate, PAA propylacrylic acid, PVA Polyvinyl alcohol, PVP Polyvinyl pyrrolidone, ECM Extracellular matrix, PGS poly(glycerol
sebacate), PANI Polyaniline, PPy Polypyrrole, PEG Polyethylene glycol hydrogel, PEGD polyethylene glycol diacrylate, iPSCs Induced Pluripotent
Stem Cells, MSCsMesenchymal Stem Cells, CPCs Cardiac Progenitor Cells, CMs Cardiomyocytes, EC Endothelial cells
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In vitro culture of iPSCs-CMs on 3D scaffolds (derived from
natural ECM of decellularized heart tissue) was also found to
have improved CMs functionality and maturation in terms

calcium signaling, beat kinetics and response to pharmacolog-
ical stimuli [254]. In our study, we electrospun PCL nanofi-
bers [264] and cultured iPSCs on Matrigel™- coated aligned

Fig. 4 Human iPSCs cultured on
aligned PCL nanofibers coated
withMatrigel™. a and b Random
PCL nanofibers; c and d Aligned
PCL nanofibers (c and d). Growth
of human iPSCs on Matrigel™-
coated tissue culture plates (e) and
electrospun aligned PCL
nanofibers (f)

Fig. 3 In vitro culture of human iPSCs on electrospun PCL nanofibres. A and B: Optical microscopy (a) and Scanning Electron Microscopy (b) of
electrospun PCL nanofibers. c Colonies of human iPSCs cultured on PCL nanofibers
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nanofiber that promoted cell attachment, proliferation and
alignment of iPSCs on scaffold (Figs. 3 and 4). A number of
strategies such as triculture with fibroblast and endothelial
cells, use of pro-angiogenic factors, incorporation of natural
ECM and growth factors, incorporation of electro-conductive
nanoparticles, exposure of electric or magnetic fields, micro-
patterning etc. are being investigated worldwide to improve
the post-transplantation functionality of the tissue engineered
cardiac patches [247, 255, 275, 284].

Cardiac tissue-like structures can be 3D printed from
iPSCs-derived CMs and other cardiac cells by mixing them
with bioinks and rapid prototyping. Several bioinks such algi-
nate, collagen I, fibrinogen,Matrigel™, or even decellularized
ECM have been tested and found suitable for generating
multi-layered 3D cardiac tissues. Maiullari et al. [248] devel-
oped a multi-cellular heart tissue from iPSCs-derived CMs by
co-printing it with endothelial cells encapsulated in hydrogel
strands of alginate and PEG-fibrinogen. In yet another ap-
proach, the iPSCs-derived CMs were bioprinted into cardiac
patches by using ECM from decellularized omental tissue as
bioink [259]. Gao et al., [257] used multiphoton-excited 3D
printing technology to fabricate a scaffold from photoactive
gelatin polymer, on which human iPSCs could differentiate
into CMs, endothelial cells and smooth muscle cells to form a
cardiac patch. Transplantation of these iPSCs-derived cardiac
patches into mice model showed significant improvement in
cardiac function [257]. The 3D printing technologies provide
an advantage over other methods in that it can recapitulate the
native heart anatomy and vessel architecture through mathe-
matical modeling for prototyping. Studies have shown that
iPSCs-derived CMs could also be developed as cell spheroids,
along with endothelial cells and dermal fibroblasts, and 3D
printed to form a tubular cardiac constructs to function as a
cardiac pump [285]. In yet another approach, iPSCs-derived
CMs were co-cultured with fibroblast and ECM-derived col-
lagen on a pre-printed holder to generate engineered heart
muscle (EHM), which was scalable in a GMP system [286].

The iPSCs-CMs have also been used for generation of
engineered heart tissue (EHT) by decellularization of
cadeveric heart using detergents and re-seeding with iPSCs-
CMs, fibroblasts and endothelial cells. Decellularized heart
tissue maintains the natural architecture of native heart and
ECM and therefore, upon re-seeding promotes the prolifera-
tion of human iPSCs and provides cues for tissue-specific
differentiation [287]. Such strategies have successful in the
development of beating heart in mouse model and created
great hope in regenerative medicine. It was seen that re-
population of decellularized heart with iPSCs-derived cardio-
vascular progenitor cells lead to proliferation and differentia-
tion of seeded cells into CMs, smooth muscle cells and endo-
thelial cells and beating heart could be obtained.
Unfortunately, the EHT was insufficient for pumping blood
due to slow electric conduction caused by lack of gap-

junctions and limited number of CMs. Nevertheless, iPSCs-
CMs derived EHT has created lot of hope for future
development.

Current Limitations and Challenges
in the Derivation and Applications of iPSCs

Limitations and Challenges in Cellular
Reprogramming, Derivation and Culture of iPSCs

Cellular reprogramming possesses several challenges in the
field of regenerative medicine such as incomplete
reprogramming, clonal diversity, genomic integration of
the reprogramming factors, lower efficiency and longer time
duration required reprogramming the cells. Despite tremen-
dous r e s ea r ch , t he p r e c i s e mechan i sm beh ind
reprogramming and functionality of reprogrammed iPSCs
has remained elusive. In many cases, incomplete
reprogramming of iPSCs was reported to occur wherein
iPSCs showed similarities with ESCs in their morphology
and phenotype but exhibited aberration in chromatin at tran-
scription level [56, 288, 289]. Thus, in many cases, trans-
plantation of iPSCs lead to development of teratoma and
immune-rejection in mice models [290]. In some cases, even
the transplantation of fully-reprogrammed iPSCs did not
overrule the development of teratoma, as was seen with
ESCs. Being patient-specific cells, it was expected that the
iPSCs will have matching MHC haplotype with the donor
and therefore, it will increase the immunological compatibil-
ity and eliminate the need for post-transplantation immune-
suppression therapy. However, in a recent study, MHC
matching failed to prevent the long-term rejection of
iPSCs-derived neurons (in brain) in non-human primates
[291]. Apparently, during reprogramming event, the antigen-
ic properties of the somatic cells are also reprogrammed
[292]. Nevertheless, a number of other studies have shown
that fully differentiated autologous iPSCs-derivatives are
well tolerated by the host without using immune suppression
regimen [292, 293]. Some studies have also shown that gen-
eration of large number of MHC homozygous iPSCs could
serve as a source of allogenic cells for transplantation [294].
However, further research is required in this direction.

Another challenge in iPSC research has been the diversity
in the clonal characteristics of iPSCs due to epigenetic mem-
ory or genetic instability [295]. In many cases, iPSCs were
shown to have DNA methylation and histone acetylation sig-
natures similar to their parental cells [296, 297] or have an
aberrant DNA methylation [56]. The residual somatic cell
memory in iPSCs results in their slow proliferation and differ-
entiation ability. Such variation also affects the functionality
of the iPSCs and increases the risk of immunogenicity and
tumorigenicity of the cells. Consequently, clonal diversity
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restricts the direct application of iPSCs in cell therapy, disease
modelling and personalized medicine. In a human clinical
trial, Mandai et al. [105] observed that iPSCs-derived retinal
epithelial cells from one of the patients passed the in vitro
tumorigenesis test but was not usable for transplantation in
human due to presence of three deletions observed in the
DNA sequences. Variation in the success of iPSCs-derived
cells may also occur due to variability in the differentiation
of individual cells.

A yet another challenge is the integration of DNA in the
genome of the somatic cells, which may lead to unpredict-
able effects in the reprogrammed cells. Thus, attempts have
been made to develop strategies for excision of integrated
genes or use non-integrating vectors. However, such strate-
gies have resulted in lower efficiency of reprogramming
(0.001–0.01%). To overcome the problem of low
reprogramming efficiency, new approaches such as use of
epigenetic modifiers and/or small chemical compounds are
being investigated.

The derivation of iPSCs and their characterization and
differentiation are expensive and time-consuming process
requiring ~$10,000 - $25,000 per cell line and at least ~6–
9 months of time in an established laboratory. Generating a
clinical-grade iPSCs may cost up to $800,000 [107]. Further,
the setting up iPSCs facility involves exorbitantly high cost
for infrastructure and intensive capital investment in clinical
trials. Most developing and undeveloped countries have ill-
developed research infrastructure for stem cell therapies.
Therefore, extensive research is required to expedite the pro-
cess of iPSCs derivation and reduce the cost of their mainte-
nance, differentiation and transplantation. Further, the tech-
nology is still in its developing phase and a consistent regu-
lation by various regulatory agencies is still not available.
The current iPSCs culture procedures in human do not meet
the stringent standards of GMP for their scalable culture. The
protocols for iPSC isolation and CM differentiation differ
from lab-to-lab and can contribute to variability and repro-
ducibility of overall outcomes of the iPSC-based cell therapy
[298, 299]. Differences in the iPSC isolation and differenti-
ation methods, including the cell culture media and expertise
of the technician, dramatically impact the colony morpholo-
gy of iPSCs, cellular homogeneity, differentiation efficiency
and their functionality in terms of gene and protein expres-
sion [300, 301]. These variations in each step of the iPSC
isolation, culture and differentiation may accumulate and can
result in altogether different outcome than expected. Thus,
rigorous quality control measures, standardized protocols
and ‘gold standard’ control iPSC lines are needed to ensure
that the newly isolated iPSCs meet the standard. GMP com-
pliant raw materials and protocol, single cell assay technol-
ogies and big data analytics of transcriptome and proteome
data may help identifying and minimizing the sources of
variability.

Limitations and Challenges with In Vivo Survival and
Retention of iPSC-CMs

The iPSC-CM based cell therapy by cardiomyoplasty suffers
from low cell retention, variable bio-distribution and poor
survival of implanted cells [302, 303]. The intramyocardially
injected iPSCs can undergo massive displacement from the
site of injection and accumulate in the lung [304], corroborat-
ed by their venous drainage and rapid exit through injection
channels during heart contraction. The efficiency of iPSC-
derived CM cardiomyoplasty may further reduce due to acute
inflammation and injury caused by injection procedure and
blockage of the microcirculatory network by the injected cells.
The local ischemic may result in the low survival of the
transplanted cells and thus, compromises their functional effi-
ciency. Inefficient functional integration into host tissue has
also been reported to occur due to disorganized communica-
tion between transplanted CMs and host ECM or due to poor
electromechanical synsytium formation between iPSC-
derived CM and native CMs in the heart. In one study, it
was shown that overexpression of N-cadherin, which is criti-
cal for CM adhesion, into iPSC-derived CMs not only im-
proved their functional integration but also augmented their
reparative ability in the failing hearts of mouse MI model
[305].

Several studies on cardiomyoplasty of iPSC-derived CM
reported functional improvements in CVDs but the functional
benefits were either transient or did not result in the formation
of structure myocardium [306]. Some studies even suggested
that the beneficial effects of iPSC-derived CMs may actually
be due to their cytokine-mediated paracrine effects such as
anti-inflammation, anti-apoptosis, anti-fibrosis and pro-
angiogenesis action mediated by cytokines such as TNFα,
PIGF1, GCSF, VEGF, SDF1α, VCAM1 and PAI1 [136].
The retention, survival, bio-distribution and engraftment of
iPSC-derived CMs may be improved by use of biomatrices
or scaffold-based 3D cardiac constructs [302]. Cardiac tissue
constructs, seeded with high concentration of iPSC-derived
CMs with improved conductive properties through incorpora-
tion of electrocondutivematerials (e.g. carbon nanofibers, PPy
etc.) into scaffolds are thus, being investigated [272, 304].
Currently, the biggest limitation in cardiac tissue engineering
lies in delivering oxygen to all cells within the construct,
which limits their engraftment and survival after transplanta-
tion. In the native myocardium, capillaries of ~7 μm diameter
are spaced at distances of ~20 μm, with each myofiber located
between two capillaries, to meet the high oxygen demands of
metabolically active CMs [307]. Angiogenesis occurs by pro-
liferation of endothelial cells under the influence of VEGF,
PDGF and FGF2 and the vascular network is stabilized by
smooth muscle cells and pericytes directed by PDGF-β and
its receptor (PDGFR-β), angiopoietins and their receptors
(Tie-1 and -2) [308]. Thus, several approaches such as tri-
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culture of CMs with endothelial cells and fibroblasts, supple-
mentation of culture medium with synthetic oxygen carriers
(e.g. perfluorocarbon) and incorporation of proangiogenic fac-
tors and peptides (e.g. VEGF, HGF, antiopoietin-1, MCP1)
etc. are being investigated to promote neovascularisation or de
novo vasculogenesis during cardiomyogenesis but remains a
daunting task to be accomplished [309].

Conclusion

The iPSCs technology is a rapidly evolving field, offering a
wide range of applications in cardiac regenerative medicine
through cell-based therapy, scaffold-free cardiac patches and
cardiac tissue engineering. It also offers opportunities to iso-
lated iPSCs-CMs from patients affected with genetic diseases
for the purpose of correcting the underlying genetic mutations
or understanding their pathophysiology. Newer small mole-
cules are being identified for improving the nuclear
reprogramming of somatic cells and their differentiation into
CMs. New culture methods and transplantations devices are
also being developed for their efficient clinical applications. It
has also become possible to directly reprogram the somatic
cells into CMs without an intermediately pluripotent state,
which further opens the possibility of direct in vivo
reprogramming for treatment of end-stage cardiac diseases.
However, iPSCs technology is also uncovering a number of
newer challenges such as clonal diversity, immno-rejection
and tumorigenesis which were actually in genesis of iPSCs
research itself. Finally, deriving clinical grade iPSCs-CMs
following GMPs, scalability, high cost and regulatory compli-
ances for clinical use of iPSCs are to be addressed before the
bed-side availability of the technology.
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